
DeepaMehta — Another Computer is Possible
Jörg Richter, CTO, DeepaMehta Company

jri@deepamehta.de
www.deepamehta.de

Jurij Poelchau, fx-Institute
poelchau@fhochx.de

www.fhochx.de

August 10, 2007

Introduction � 2
Machine Dreams � 2
The Potential of Ontologies � 2
The Trouble with Computers and their solutions� 3
The Vision of an Integrated Work Environment� 6

The DeepaMehta Platform � 7
Topic Maps Frontend� 8
System Architecture � 10
Data Model� 11
The Application Framework� 13
The DeepaMehta Unified Process� 16

Customer Solution Examples � 17
Kiezatlas, a geographical CMS � 17
amina Knowledge Platform� 18

Outlook� 19
Extended support for semantic technologies� 19
Extended collaboration features � 20
Extended standard applications� 20
Architectural Concerns� 20

Related Work� 21
Semantic Desktop � 21
Graph-based Information Visualization� 21

Future Research Directions � 23
Reanimating Soft Cybernetics � 23
Examining underlying images � 24
Research Issues� 25

References � 26
Additional Reading� 27
About the Authors � 28

� 1 / 28



Introduction

Machine Dreams
A crucial experience during my time at university — computer science (with focus on AI) 
and linguistics — was the documentary “Maschinenträume” (1988) by Peter Krieg. It 
features the long-term AI project “Cyc”, in which Doug Lenat and his team try to represent 
common sense knowledge in a computer. When Cyc started, in 1984, it was already 
known that many AI projects failed due to the machine’s lack of common sense 
knowledge. Common sense knowledge includes e.g. that two things can’t be in the same 
place at the same time, or that people die, or what happens at a children's birthday party. 
During the night, while the researchers are sleeping, Cyc tries to create new knowledge 
from its programmed facts and rules. One morning the researchers were surprised by one 
of Cyc’s new findings: “Most people are famous”. Well, this was simply a result of the 
researchers having entered, beside themselves, only celebrities like e.g. Einstein, Gandhi, 
and the US presidents. The machine-dreaming researchers, however, were in no way 
despondent about this obviously wrong finding, because they figured they would only have 
to enter the rest of the population, too. The underlying principle behind this thought is that 
it is possible to model the whole world in form of ontologies. The meaning of the world can 
be captured in its entirety in the computer. From that moment the computer can know 
everything that humans know and can produce unlimited new insights. At the end of the 
film Peter Krieg nevertheless asks: “If one day the knowledge of the whole world is 
represented in a machine, what can humans do with it, the machine having never seen the 
world.”
Jörg Richter

The Potential of Ontologies
In order to create computer applications that suit the human way of thinking and working, 
one needs to think about ontologies. There are ontologies for e.g. molecular biologists, for 
news editors, for tourist agents, or for connoisseurs of wine. By developing an ontology 
people agree on the meaning (semantics) of certain computer codes. Every community of 
interest is free to create their own ontology or to co-work with like-minded people on the 
development of a shared ontology. This development process — the ontogenesis — is at 
least as important as the resulting ontology itself.
An ontology of the entire world will never exist, because the meaning of terms depends on 
their usage context. A wine merchant probably has different priorities than a wine 
connoisseur which will be reflected in their ontologies. When developing an ontology, local 
or global communities of interest focus on that parts of the reality that are relevant to their 
intended usage context. The authors see the prior potential of ontologies not in creating an 
one-to-one representation of reality, in order to enable automatic reasoning, but in 
“learn[ing] to think together by building shared structures of meaning” (Murray, 2003, p. 
11). That is not in automation, but in collaboration.
We can accept that invitation not only to think about application domains and usage 
contexts but also to re-think the underlying concepts of the computer itself, especially the 
human-computer-interface. It is interesting to bring to mind that ontologies are firmly 
molded into every software system — long before the semantic web effort. These 
ontologies are made up of the concepts and their relations defined by the software 
architect, and according to which the user is supposed to think when using the software. 

� 2 / 28



So, the concepts of e.g. “presentation”, “slide” and “masterslide” and their relations are as 
firmly molded into the software “Powerpoint” as the concepts “application”, “window”, “file”, 
and “folder” in the software “user interface”.
It would be significantly easier for the computer user if he/she could work semantically not 
only in a single application but if the entire computer were designed as a semantic work 
environment. In such an environment the user would no longer work in applications, or 
store files in folders, but would be confronted with the terms of his/her way of thinking and 
working directly. At the lowest level such an environment could provide the concepts “more 
or less structured information unit”, “relation between information units”, “view of a 
information context”, “shared workspace”, and “private sphere”. At the next higher level 
more specific concepts of yet general usage like “contact info”, “appointment”, “task”, and 
“project” could be provided. And at the highest level the user would find the concepts of its 
individual work and leisure domains, e.g. a molecular biologist and movie fan would work 
with the concepts “chromosome”, “gene”, “protein”, as well as “movie”, “actor”, and 
“cinema”.

The Trouble with Computers and their solutions
When learning how to use a computer nowadays, one understands quickly: for every 
purpose one needs a specific application. To write a text one uses a word processor. 
Emails are dealt with using an email application. To surf the internet one needs a web 
browser and one’s contact information is stored in the address book. Launching an 
application causes a window to open, showing one the application controls as well as the 
actual content (texts, emails, web pages, contact details). When writing a text, one needs 
to save it into a file. This file is located in a certain folder on the hard disc. When one wants 
to access one’s text later on, one has to use another application: a file browser to locate 
and open the respective file. Within the first weeks of learning every computer user 
experiences the loss of his/her text (image, etc.) — either because he/she forgot to save it 
or because he/she cannot find it anymore.
Working with applications, files, and folders and the importance of saving is surely not 
difficult to learn, and even may — as soon as one has internalized the logic of the 
computer — seem reasonable. However, if we turn away from the machine logic to human 
work situations it becomes apparent how unnatural and inefficient this mode of operation 
is.
A typical work situation involves a number of heterogeneous content objects. If we take, for 
example, the production of this book, “SWE”: there are about 20 articles addressing 
different topics. Each article is written collaboratively by several authors. For each author 
there are several contact details (email address, homepage, telephone number). Each 
article refers to a number of further information resources (projects, websites, other 
articles). During the review phase authors review each others’ articles leading to further 
article revisions. Eventually the editors assemble the accepted articles into the final book 
ready for the print shop.
By means of this work scenario two fundamental flaws of the computer and the resulting 
problems can be made clear:
1) Missing Relations
The meaningful relations between information resources are not represented in the 
computer. Thus, they neither can be displayed on-screen nor be exploited for navigation. 

� 3 / 28



There is no relation between e.g. the author of a Word document and its entry in the 
address book application. The user has to switch to the address book and search for the 
contact details manually. Even within a single application, relations are not easy to 
represent: if an article, as well as its reviews, are created with e.g. Microsoft Word, it is not 
possible to represent the relations between these files within Word, but only indirectly in 
the file system structure, if at all.
Because the relations are not represented in the computer they can not be shared with 
other users. This makes collaboration inefficient, because every co-worker has to 
reconstruct the relations individually. To represent the relations between e.g. the articles 
and their reviews one could store every article in its own folder and its reviews in 
respective sub folders. If a review is sent to a co-worker as a mail attachment, the relations 
to the main article gets lost and the receiver has to reconstruct it in his/her own way. This 
additional effort increases with the number of co-workers, thus a lack of synchronization 
and various misunderstandings between the co-workers are programmed.
The problem of missing relations can be solved by releasing the contents (texts, emails, 
web pages, contact details) from their applications and storing them in a corporate 
memory using a neutral data format. Within the corporate memory, arbitrary content 
objects can be set into relation, and external resources can be integrated by storing 
reference objects in the corporate memory. The problem of inefficient collaboration can be 
solved by letting all co-workers operate on a central (server side) corporate memory 
instead of their local hard discs.
For both problems the suggested solutions are already in use through specific applications 
(e.g. Document Management, Content Management, Personal Information Management, 
Workflow Management, Groupware, and Wikis), but to the knowledge of the authors, there 
is no computer platform that operates system-wide according to this paradigm.
2) Missing Work Context
The greatest problem which makes using a computer so cumbersome is that the user’s 
work context is not represented on-screen. This applies especially to the knowledge 
worker who deals with a number of applications and windows simultaneously. In the work 
context of “SWE Book”, for example, a number of heterogeneous content objects (texts, 
emails, web pages, contact details) are involved. A book author will probably use the 
concept of “folders” to set up his/her computer as follows: on the hard disc there is a folder 
“SWE Book” to hold the article and further assets. In the web browser there is a folder 
“SWE Book” to hold the bookmarks of the project’s website and other websites. In the 
email application there is a folder “SWE Book” to hold the mails of the book editors and 
other authors. And in the address book application there is a folder “SWE Book” to hold 
the contact details of the project’s members. Conclusion: in the user’s mind there is one 
project, “SWE Book”, whereas in the computer his/her project is chopped into pieces and 
fragmented to at least four different work environments.
The user has to switch between several applications on a regular basis. Every switch 
changes the display as well the usage rules abruptly. What is displayed in one moment 
has vanished (resp. is obscured) in the next, the usage rules that are applicable in one 
moment are not so in the next. The user can, of course, recover his/her “SWE Book” folder 
in each application, but probably along with another 100 folders which are not related to 
the current work context in any way.
If the content objects belonging to the current work situation — and only these — were 
visible together on-screen, the cognitive load of the user would be reduced significantly. 

� 4 / 28



This would free the user’s mind to let him/her concentrate on his/her work instead of on 
the workings of the machine.

Fig. 1: Current window-based user interface with 4 open applications: web browser, file browser, 
email client, and address book. Problem 1: the meaningful relations are not displayed. Information 
belonging to one project (here: “SWE Book”) are fragmented to several work environments. 
Problem 2: the user’s work context is not displayed. The user must switch between applications 
frequently and has to cope with permanent context changes.

Within the scope of the current user interface paradigm — every application opens another 
window and the application’s content objects are bound to that window — the problem of 
the missing work context can not be solved. The kind of navigation that results from that 
paradigm is called here “Go-To Navigation”. To look up e.g. an email address while being 
in a web browser the user must go-to that email address (that is switching to the address 
book application) and cope with a complete context switch. This situation can not be 
abolished by the development of ever further applications because this only leads to a 
further fragmented user experience.
The problem of the missing work context can only be solved by establishing a new user 
interface paradigm in combination with a new application model. This new interface 
paradigm can realize a kind of navigation that is called here “Bring-To-Me Navigation”. To 
look up e.g. an email address while reading a web page, the email address is brought to 
the user, that is, it is searched for and displayed within the current work context. The on-
screen work context remains stable. Heterogeneous content objects (texts, emails, web 
pages, contact details) and their meaningful relations (problem 1) are displayed within the  
same window. The aim of Bring-To-Me Navigation is to let the interface itself disappear, 
and let the display become a “visual cache” (Canfield Smith et al., 1982) of the user’s state 
of mind.

� 5 / 28



In Richter et al. (2005) the terms “Stable Views” and “Constructive Browsing” are used to 
describe this new interface paradigm, but here the term “Bring-To-Me Navigation” is used 
to express that information is brought to a single window and to contrast it to the traditional 
Go-To Navigation.
In order for the content objects from different applications to share the same display 
context, the application logic must be separated from the display. The application as such 
will no longer be visible to the user, but only the content objects. Because there is no 
application-specific user interface anymore, the content objects must provide the 
application-specific operations themselves, e.g. an email object must provide a “send” 
operation to the user. This requires a new application model. The new application model 
will be realized as an application framework to allow application developers to bind 
operations to content objects and to interfere with the shared display context.
To our knowledge there is no computer platform that offers stable on-screen work contexts 
system-wide.

The Vision of an Integrated Work Environment
The vision of the DeepaMehta platform is to provide the knowledge worker with an 
integrated environment that supports his/her work, thought, and collaboration process. The 
DeepaMehta platform replaces the traditional computer desktop by a semantic desktop 
that “push[es] the user interface farther out from the computer itself, deeper into the user’s 
work environment” (Grudin, 1990).
DeepaMehta envisions:

• Removing machine concepts (applications, document formats, ...) from the user interface 
and thus from the user’s mind. Confronting the user only with the concepts of his/her 
daily work and thought. Allowing the user to fully control the display in order to represent 
his/her work context on-screen. Proving that "a well-designed computer system can 
actually improve the quality of your thinking" (Canfield Smith et al., 1982)

• Breaking down the “application prison” (Nelson, 2001) and freeing the data from their 
applications in order to let the user navigate associatively across application-borders. 
Allowing the user to re-use information objects in different work contexts.

• Designing a user interface that allows the user to apply his/her natural faculties like his/
her sense of orientation: “I’m located at a certain place within a stable environment”. 
Designing a user interface that accommodates the individual learning process.

• Designing a software architecture which allows software developers to contribute 
domain-specific application logic without confronting the user with applications.

• Supporting collaboration by allowing workgroups to operate on a shared information 
repository and to build shared structures of meaning. At the same time: providing the 
user with protected spaces to encourage creativity.

• Designing a work environment that supports the whole process, from a) content creation, 
to b) enrich content by structure, and c) enrich structured content by application logic. 
Designing a work environment that allows constant changes at every stage.

• Delivering computers that boot directly into DeepaMehta as the standard user interface 
and work environment.

� 6 / 28



The developers of DeepaMehta strive to identify generic operations that are common to all 
applications, e.g. editing, searching, displaying, navigating, and to build them right into the 
platform. Domain-specific operations may be implemented in the scope of the 
DeepaMehta application framework. DeepaMehta applications are running at the server 
side and are not in the sight of the user.

Operating System

Applications

                  Text Editor      Word Processor

         Outliner      Type Setting Tool

                   Paint Program      Draw Program

            Presentation Software      File Browser

                     Web Browser      Email Client

              FTP Client      Chat Client

    Messenger      Personal Information Management

                   Groupware      Media Player

      Database Client      Development Environment

Document Formats

     .txt    .rtf    .doc
        .pdf    .ppt    .xls
    .psd    .gif     .jpg
        .png    .tiff    .mp3
    .wav    .rm    .mov
        .swf    .avi    .mpeg

Operating System

Content

Text

Image

Audio

Video

Operations

Create / Edit / Delete

Search / Retrieve

Navigate

Assemble

Structure / Model

Distribute / Publish

Domain-Specific Operations

DeepaMehta Semantic Layer

Network Protocols

          HTTP     POP    

     IMAP     SMTP

           FTP     LDAP

      SSL    IRC    Jabber

Fig. 2: Old world — New world: The traditional computer user is bothered with operating systems, 
and applications which are built around document formats and network protocols (left side). In 
contrast, the DeepaMehta user is confronted only with content, and performs operations on the 
content directly — all on a semantic foundation (right side).

The DeepaMehta Platform
The DeepaMehta software platform for collaboration and knowledge management is a 
comprehensive integrative concept that removes existing barriers that make current 
computer usage so cumbersome. DeepaMehta combines concepts and research findings 
in the fields of software engineering, information visualization, human computer 
interaction, semantic web, and creativity techniques in an innovative manner. DeepaMehta 
has the potential to be a great integrator:

• Mind Maps / Concept Maps
The DeepaMehta semantic desktop combines the cognitive virtues of mind maps with 
the computational virtues of concept maps resp. semantic networks.

• Visualization / Workspace
In DeepaMehta there is no separation between the graphic visualization of content 
structures and the actual work environment. All kinds of content is created and edited in-
place. There is no separation between file-level and application-level.

� 7 / 28



• Brain Storming / Structuring / Processing
DeepaMehta supports the whole information handling process: from creating information 
in a brainstorming-mode, to structure information and building models, and to processing 
information by implemented logic — all is performed in one environment.

• File Level / Application Level
DeepaMehta steps away from the file-application-dichotomy and establishes a new 
paradigm of content and operations. Typed content objects provide the manipulative 
operations themselves. Generic operations are provided by the DeepaMehta platform.

• Network / Local Machine
DeepaMehta removes the barrier between the local desktop machine and the network by  
establishing a uniform user interface for personal content and shared content. Working 
with local content and remote content results in no different user experience.

• Topic Maps / RDF
The DeepaMehta data model is inspired by ISO 13250 Topic Maps but has extensions to 
incorporate RDF-like features. DeepaMehta has the potential to marry the ISO Topic 
Maps standard and the W3C RDF standard.

Topic Maps Frontend

Fig. 3: The “DeepaMehta” networked semantic desktop. The left side displays information objects 
of different kinds and origins as well as their meaningful relations as a topic map that represents 
the current work context of the user. The right side displays detail information about the selected 
topic, e.g. an email or a webpage. The information objects are edited and manipulated in-place, 
e.g. emails are written and send straight from the desktop.

� 8 / 28



The DeepaMehta desktop is split into two areas. At the left hand side a topic map 
consisting of typed topics and typed associations is displayed. On the right hand side, 
detail information about the currently selected topic, association, or the topic map itself, is 
shown. This panel is called the Property Panel. If, for example, an email topic is selected, 
the email (with its “From”, “To”, “Subject” and “Text” properties) is shown in the property 
panel. If a webpage topic is selected, the page (with its “URL”, “Title” and “Content” 
properties) is rendered in the property panel. The user performs basic text editing and 
image-manipulation operations directly in the property panel, without the use of external 
applications.
To perform operations on a topic, an association, or the topic map itself, the user utilizes 
context menus. Generic operations such as “Hide”, “Retype”, “Delete” or “What’s 
Related?” and “Google Search” are provided by every topic. Depending on their type, 
topics may provide more specific operations, e.g. an email topic provides a “Send” 
operation, and a webpage topic provides a “Reload” operation. Topics and associations 
can be created manually or programatically. Topics and associations can result from a 
variety of sources such as mailservers, webservers, databases, and web-services. 
Associations can be created between any two topics, regardless of their origin.
Topic maps are not like documents containing contents, but always personal views to 
contents existing elsewhere. All topics and associations are stored in a server-side 
repository, called the Corporate Memory. The corporate memory is accessible to various 

users and workgroups simultaneously, 
exposed to an access control 
mechanism of course. A topic map is an 
individual view to extracts of the 
corporate memory, that are relevant in a 
particular working context. It’s up to the 
user to decide which topics and 
associations to retrieve, and where to 
show them. Topic maps are of unlimited 
size and are moved by mouse dragging. 
Topic maps that serve as common 
views within workgroups are published 
into shared workspaces.
A query to the corporate memory is 
visualized graphically and the result set 
is displayed as a topic of the form of a 
ton. In order to avoid cognitive overload, 
DeepaMehta doesn’t reveal a search 
result at once if it comprises more than 
7 topics (Miller, 1956). If the result does 
not comprise more than 150 entries, 
single topics may be revealed via a 
popup menu. Large result sets may be 
reduced by applying a narrower filter. A 
topic query may involve the topic name, 
topic type, topic properties and 

associations the topic is involved in. The result may be sorted. Result sets in DeepaMehta 
can be regarded as “smart folders”, i.e. the user can re-trigger the query that underlies a 

Fig. 4: The context menu of the person topic 
“Douglas C. Engelbart”. By the means of the 
“What’s Related?” command associated topics are 
retrieved from the corporate memory and displayed 
in the current topic map. Here, the submenu reveals 
Douglas C. Engelbart is associated with 2 other 
persons, 1 computer, 2 articles and so on.

� 9 / 28



ton by double-clicking it. A ton may represent the query, e.g. “All emails I’ve received from 
Jurij in the last 30 days”.

The user interface is fully personalized. 
After logging in the user finds him/
herself directly on the DeepaMehta 
desktop, exactly as it was left in the 
previous session.
The DeepaMehta Platform is based on 
ISO 13250 Topic Maps. Topic maps 
consist of topics and associations, both 
are typed. Types are Topics too. The 
user can define new types by deriving 
them from existing types, create 
additional properties, and defining 
relations to other types. New types can 
be used immediately, also together in 
shared workspaces. Every topic can be 
retyped at any time without losing 
content. All this provides the basis for 
supporting the dynamic collaborative 
process of building new ontologies.

System Architecture

Communication

Application

Storage

Presentation

DeepaMehta Application Framework

Standard

Applications

Datasource Interface

Relat.

DBMS
SQL XML LDAP

Thin Client

(Java)

TCP-Port (7557) HTTP (Port 80)

Webbrowser

(HTML)

Monolithic App

(Java)

Native Interface

OO

DBMS

SOAP

File

System

DeepaMehta Application Service

Custom

Applications
RMI

XML Import/Export
ISO 13250 Topic Maps

Web Engine

• Info Generator

• Form Generator

• Form Processor

Publishing Engine

• XSL Transformer

File

(PDF / SVG)

Web Interface

• Logic (Servlet)

• View (JSP)

Corporate Memory Interface

Fig. 6: DeepaMehta is a multi-layered distributed software architecture. The heart of the 
DeepaMehta software architecture consists of an application server. DeepaMehta applications are 
developed in the scope of the DeepaMehta application framework and run at server-side. 
Applications can access a variety of data sources and can be served to a variety of frontends.

Fig 5: In DeepaMehta large amounts of data are 
displayed as a ton. A ton represents a query to the 
corporate memory and the result set at the same 
time. In this example an unspecific person search 
results in 267 topics — too much to reveal at once. 
Applying a filter “kay” yields to a result set small 
enough to be revealed immediately.

� 10 / 28



Features of the DeepaMehta software architecture:

• Java-based application server
• multi-layer architecture
• Supported Semantic Web standards: ISO 13250 Topic Maps, RDF
• DB-neutral storage layer, currently MySQL and HSQL (pure Java DB)
• Variable frontends: Topic Maps GUI (Thin Client), web browser, PDA, mobile phone
• Object-oriented framework for application developers
• SOA (Service Oriented Architecture)
• Access to external web-services via SOAP
• Access to external datasources: SQL, LDAP
• XSLT-based publishing engine for dynamic SVG, PDF and XHTML generation
• Integrated mail and web support: SMTP, POP3, IMAP, HTTP
The DeepaMehta system architecture comprises all the layers of an IT system: the storage 
layer, the application layer, and the presentation layer. DeepaMehta is a distributed 
architecture, so that every layer can reside on a different machine.
The heart of the DeepaMehta software architecture consists of an application server. 
DeepaMehta defines a unique application model and provides a framework for application 
developers. A DeepaMehta application is actually a collection of topic types and 
association types that may be assigned to a workspace. Every type can be attached to a 
Java class that implements the behavior of the instances of that type. The topic type 
“Postal Address”, e.g. may be attached to an implementation that fetches a map from 
Google Maps for a particular address. New applications can be aggregated from existing 
types. Thus every application that deals with postal addresses will benefit from the Google 
Maps behavior.
Types can be assigned to shared workspaces. The user “deploys” an application just by 
joining a shared workspace. Once a user joins a shared workspace he/she gets access to 
the assigned types, and thus to their functionality.

Data Model
The DeepaMehta data model is inspired by ISO 13250 Topic Maps. On the one hand the 
Topic Maps standard is not fully implemented, on the other hand, there are extensions to 
incorporate RDF/RDFS-like features. There are a lot of proposals for the integration of the 
ISO Topic Maps standard and the W3C RDF/RDFS standard (Pepper et al., 2006) but 
DeepaMehta chooses its own ad-hoc approach because when the project started, in early 
2000, these proposals did not yet exist. Furthermore in DeepaMehta there are higher-level 
concepts like Query, Datasource, Workspace, and User defined.

• Topic Maps concepts that are not realized resp. modified in DeepaMehta:
n-ary Associations: For the sake of simplicity DeepaMehta supports only binary 
associations. This is not a serious lack because a n-ary association can be emulated by 
n binary associations.
Association Role, Association Role Type: because DeepaMehta supports binary 
associations only, and associations are explicitly directed from node 1 to node 2 there is 

� 11 / 28



no need to realize the concepts of Association Role and Association Role Type. The 
meaning of the involved nodes are represented in the direction of the association.
Occurrence, Occurrence Role, Occurrence Role Type: because DeepaMehta pursues an 
integrated GUI approach, occurrences are not realized explicitly. External resources are 
represented as topics, e.g. a file is represented as a topic of type Document, and a 
webpage is represented as a topic of type Webpage.
Facet: because occurrences are represented as topics and because DeepaMehta 
provides the concept of properties (see below), there is no need to realize the concept of 
facets.
Scope: not yet realized. To a great extend ambiguity may be diminished by typing topics. 
In DeepaMehta there would be e.g. 2 topics “Tosca”, one of type Opera the other of Type 
Character. Furthermore DeepaMehta provides the concepts of Workspaces and Users. 
To Workspaces a number of types is assigned. Users are members of workspaces and 
have access to the respective types.
Topic Maps: In DeepaMehta topic maps are topics too. Thus, topic maps can act as 
containers for other topic maps. (This is exploited by the GUI to realize the personal and 
shared workspaces which are in fact topic maps that serve as storage spaces for other 
topic maps.)

• DeepaMehta Topic Maps extensions to incorporate RDF/RDFS-like features:
Property, Property Value: part of the type system. To a topic type or association type a 
number of properties can be assigned. E.g. the type Person has the properties “Birthday” 
and “Gender”. Property Values are a enumeration of predefined property values. E.g. for 
the Property “Gender” the values “Male” and “Female” are predefined.
Relation: to define a relation between types; part of the type system. Part of the definition 
is the Cardinality and the Association Type to be used at instance-level. E.g. to model 
“City of birth”, a relation between the types “Person” and “City” may be defined, 
cardinality would be set to “One” and association type would be set to “City of birth”.

• Higher-level DeepaMehta concepts:
Query: a query to the corporate memory and the corresponding result set of topics is a 
topic itself (and is presented at the GUI as a ton). A query can involve the Topic Name, 
Topic Type, Property Values (at instance level) and associations a topic is involved in.
Datasource: external datasources like SQL databases or LDAP repositories are 
represented as topics too. A datasource is specified via its connection string (an URL 
starting with jdbc: or ldap: for example) and the assignment of topic types whose 
instances are created from datasource entities.
Workspace: a shared workspace with a number of members (users). A workspace is a 
exchange place for topic maps. Furthermore there are topic types and association types 
assigned to a workspace to hold the concepts which are used in it. Also the access 
control mechanism is based on workspace memberships. Workspaces are topics too.
User: a user of the platform. A user is a member of a number of workspaces. He/She has 
access to all the types assigned to the workspaces he/she is a member of, as well as to 
private types. A user has its private sphere (a topic map itself) to store private topic 
maps. A user is a topic too (derived from Person).

� 12 / 28



The Application Framework
The DeepaMehta platform defines its own application model and provides an application 
framework. By means of the DeepaMehta Application Framework software developers 
create applications running on the DeepaMehta platform. A DeepaMehta application 
consists of a collection of types: topic types and association types. To create, for example, 
a calendar application, one could define the topic types “Calendar”, “Event”, “Location”, 
“Person”, and the association type “Participant”.
DeepaMehta applications are not visible to the user as such but only their topic types and 
associations appearing in the context menus. Types can be assigned to workspaces; the 
user obtains access to types by joining a workspace.
The application’s data is modeled as type definitions and the application’s behavior is 
realized by attaching a Java class to a type.
A type definition comprises a set of properties, a derivation from a basis type, and relations 
to other types.

• A Property models an untyped single-value data field of a topic 
type or association type. The topic type “Event”, for example, 
could have the properties “Begin Date” and “Begin Time” and 
the topic type “Person” could have the properties “First Name”, 
“Last Name”, and “Gender”. For a property a list of possible 
values can be predefined. For the “Gender” property, for 
example, the values “Male” and “Female” could be defined.

• By the means of Derivation a type definition can be build by 
specialization of an existing type. The derived type inherits all 
the properties and behavior (see below) of the basis type.

• A Relation models the relation between two topic types. In 
order to model, for example, the place of birth one could 
define a relation between the topic types “Person” and “City”. 
A relation includes the specifications of the cardinality — one 
or many — and the association type to be used at instance 
level.

All the building blocks of the data model — topic types, 
association types, properties, property values, derivations, 
relations — are topics and associations themselves. Thus, the 
data model of a DeepaMehta application can be created directly in DeepaMehta as a topic 
map. As soon as the data model is defined the basis functions of the application can be 
used immediately. To create, e.g. an event and its participants the user creates an Event-
topic and connects it via Participant-associations with Person-topics. Further basis 
functions like changing, deleting, or searching for events (e.g. all my upcoming events) 
and also the collaborative calendar usage is possible immediately, because standard 
information processing and communication functions are already built right into the 
DeepaMehta platform.
An application consists not only of a data model and generic data manipulation operations 
but also of domain-specific application logic. The calendar application, for example, could 
notify the participants of an event in due time via email or instant messaging. This is 
possible in DeepaMehta because topics and associations are not just information carriers 
but also provide active behavior. Every type can be attached to a Java class which 

Fig. 7: By choosing from 
the list of widgets one can 
specify how to render a 
property in the property 
panel.

� 13 / 28



implements the behavior of the instances of the respective type. The Java class must be 
compliant to the DeepaMehta application framework, that is, it must be derived directly or 
indirectly from a certain base class (“LiveTopic”) and override specific methods (hooks) to 
let the topic instance react upon certain events.

Fig. 8: The elements of the data model — topic types, association types, properties, and property 
values — are topics themselves and are handled as topic maps as well. Here, the topic types of a 
calendar application are displayed. The topic types “Calendar”, “Event”, and “Person” derive basis 
properties from the “Topic” base class and define their own properties. To realize application-
specific behavior every type can be attached to a Java class.

The DeepaMehta application framework is primarily event driven. It defines a number of 
events to which a topic or an association can react. A topic, for example, can react once …

• … it is clicked. Most of the topics react by displaying their properties in the property 
panel (right side).

• … it is right-clicked. Most of the topics react by dynamically assembling and displaying a 
context menu. An “Email”-topic, for example, can provide a “Send” command.

• … a command has been chosen from its context menu. The base class provides the 
standard behavior for handling generic topic commands like “Hide”, “Retype”, “Delete”, 
“What’s Related?”, and “Google Search”.

• … one of its properties has been changed. An “Event”-topic, for example, could notify all 
the participants once an event is postponed. Furthermore, a topic can check the new 
property value and possibly reject it, or prohibit a property change a priori.

• … it is associated with another topic. An “Event”-topic, for example, could notify a newly 
assigned participant. Furthermore, both of the associated topics get the chance to 
specify a certain association type or to reject the association.

� 14 / 28



• … it is moved within a topic map. This can be useful, for example, if the topic map acts 
as a time or geo grid. Furthermore a topic can lock itself to prohibit any movement.

• … the topic map in which it is contained has been published in a shared workspace. A 
“Document”-topic, for example, uploads its assigned file to the server-side file repository.

The former list provides just an overview of the most important events. The DeepaMehta 
application framework defines about 40 events.
The event handler hooks are ordinary Java methods. Within the hooks all Java APIs can 
be used that are available on the server. Furthermore, the DeepaMehta application 
framework provides a number of service calls in order to navigate in the corporate 
memory, for example. All hooks are informed by the framework about the user who 
triggered the event. Thus the topic can impose access restrictions, for example, by 
disabling the menu commands for which the current user doesn’t have the required 
credentials.

User Management &

Collaboration

Personal Information

Management

LiveTopic

// -LIFE CYCLE-

init()

evoke()

die()

// -COMMAND HANDLING-

contextCommands()

executeCommand()

// -EVENT HANDLING-

propertiesChanged()

typeChanged()

published()

moved()

associated()

associationRemoved()

// -PERMISSION CONTROL-

deleteAllowed()

propertiesChangeAllowed()

associationAllowed()

// -DISPLAY CONTROL-

disabledProperties()

hiddenProperties()

getNameProperty()

getTopicName()

propertyLabel()

// ...

AddressTopic

AppointmentTopic

EmailAddressTopic

EmailTopic

PersonTopic UserTopic

WebpageTopic

PhoneNumberTopic TopicMapTopic

WorkspaceTopic

ChatTopic

MessageBoardTopic

File Management

FileTopic

ApplicationTopic

DocumentTopic

ImageTopic

Datasource Management

DataConsumerTopic

DataSourceTopic
<< Interface >>

CorporateDatasource

CorporateSQLSource

CorporateXMLSource

CorporateLDAPSource

Type Management

TypeTopic

TopicTypeTopic

AssociationTypeTopic

PropertyTopic

Search Management

ContainerTopic

TopicContainerTopic

ElementContainerTopic

CalendarTopic

EventTopic

Fig. 9: This class diagram shows a selection of the LiveTopic subclasses that come with the 
DeepaMehta platform. The platform’s core features like “User Management & Collaboration” (grey 
areas) as well as the standard applications like “Personal Information Management” (blue area) 
are implemented as LiveTopics. The base class “LiveTopic” provides the hooks to be overridden by 
application-specific topic classes, in order to react on certain events.

� 15 / 28



The DeepaMehta Unified Process
The development process is divided into three stages. Traditionally, at every stage another 
tool is used. At the stage of brainstorming one creates text or graphic content e.g. by using 
text editors or dedicated brainstorming tools like MindManager. To be able to process the 
contents later on by the means of application logic, a model must be built e.g. by creating 
database tables. Finally, the application logic must be coded by a programmer. At each of 
the three stages, different persons with different skills are involved and different work 
environments are used, each with a different user interface. This makes for a slow and 
cumbersome development process. Content must be migrated from one stage to another, 
changes in one stage may require changes in the other stages. Communication between 
the involved persons is difficult because of the different jargons.

Coding

Modeling

Brainstorming /
Data Acquisition

Logic

Structure

Content

Fig. 10: Processes (left side) and artifacts (right side) as involved in every IT-project. 
The DeepaMehta Unified Process accommodates constant changes in the Content, 
Structure, and Logic levels. The DeepaMehta platform supports the Brainstorming/Data 
Acquisition, Modeling, and Coding processes within one user interface.

The DeepaMehta Unified Process enables smooth transitions between all three levels 
(content, structure, and logic). Content can be created before any structure exists, and 
unstructured content can later be turned into structured content. No content will be lost, 
even if the structure changes later. Structured content, as well as unstructured content, 
and even the structure itself may be subject of later brainstorming sessions. Standard logic 
for e.g. navigating, searching, editing, and displaying content are built right into the 
DeepaMehta platform. Structured content may be processed by implementing custom 
logic.
In order to support the communication process between the involved persons collaboration 
features are built into the platform. To build contents and structure collectively, the 
DeepaMehta platform offers shared workspaces. For the negotiation about the meaning of 
structures, every shared workspace provides a forum and chat as standard communication 
tools.
The DeepaMehta Unified Process provides a significantly more efficient development 
process than other existing processes because the DeepaMehta platform simultaneously 
copes with visual, verbal, and virtual modalities.

� 16 / 28



Customer Solution Examples

Kiezatlas, a geographical CMS
The first commercially deployed DeepaMehta application was “Kiezatlas”, a geographical 
content management system (CMS). It was contracted by the Verband für sozial-kulturelle 
Arbeit, (www.stadtteilzentren.de) the German umbrella organization of settlements and 
neighborhood centers. Since 2004 Kiezatlas is successfully deployed to publish (city) 
maps of social relevant institutions on the website www.kiezatlas.de.

Fig. 11: The public web frontend 
of the Kiezatlas geographical 
content management system. The 
left side displays locations of 
stores and institutions in a city 
map. The right side shows detail 
information about the selected 
institution. Institutions can also be 
found by category or by entering a 
search term.

Fig. 12: The Kiezatlas administra-
tors use the DeepaMehta topic 
map frontend to define the 
underlying data models of city 
maps. In the upper area 
DeepaMehta standard topic types 
and properties are visible, e.g. 
“Person”, “Institution”, and “Topic 
Map”. In the lower area one can 
see how the Kiezatlas-specific 
topic types and properties are 
derived from (blue associations) 
and set into relation (purple 
associations) the DeepaMehta 
standard types. The topic type 
“Stadtplan” (city map), for 
example, derives its properties 
and behavior from “Topic Map” 
and adds its own property (green 
association). Furthermore the 
search criteria for the city map 
contents are defined via 
derivations and relations. Also part 

� 17 / 28



of the topic map are users, workgroups, and memberships (orange associations), to define access 
control (turquoise associations), i.e. the responsibilities of the various (sub)administrators. The 
public website (Fig. 11) as well as the editor backends for the institution owners (Fig. 13) are 
generated directly from this data model, e.g. if a new property or search criteria is added to the 
model, the website and the editor backend are updated automatically.

Fig. 13: The Kiezatlas editor 
backend is a form-based web 
application by which institution 
owners can update institution 
information on their own. The 
institution form is generated 
dynamically by the DeepaMehta 
web engine, based on complex 
type definitions (Fig. 12). The 
contact person of an institution, for 
example, is modeled as relation 
between the “Institution” topic type 
and the “Person” topic type. The 
DeepaMehta web form generator 
embeds the Person form (with 
“First Name”, “Last Name”, 
“Gender” fields) inside the 
Institution form. To the editor the 
form looks like an ordinary HTML 
form, but with the DeepaMehta 

web engine the user input is stored as a semantic network in the corporate memory. The contact 
person of an institution, for example, is represented as topic of type “Person” that is associated 
with the “Institution” topic.

amina Knowledge Platform
The amina knowledge platform was contracted in 2006 by the German amina foundation, 
(www.amina-initiative.de). The amina initiative aims to promote corporate responsibility 
(CR) projects by establishing a dialog between companies, universities and avant-garde 
thinkers. The amina knowledge platform is built on the basis of DeepaMehta. An 
interactive public demo is available (in German) at www.amina-wissensplattform.de. 
DeepaMehta is also utilized as a live-mapping tool during the various amina events.

� 18 / 28



Fig. 14: A topic map of the amina network. Relations between amina Corporate Responsibility 
topics (blue balls) and suitable university courses are shown in pink. amina agents and their 
affiliations to corporations and universities are displayed alongside their mentorships (blue 
associations) for the amina topics. Every amina topic is related to a shared workspace for the 
students and mentors collaborative work (not visible here).

Outlook

Extended support for semantic technologies
Currently DeepaMehta can import and export topic maps in a modified XTM format. Future 
versions of DeepaMehta will support further semantic technologies and domain-specific 
applications:

• DeepaMehta type definitions will be built from RDF Schema or vice versa.
• All topics and associations will be annotated by a Subject Identifier. This allows e.g. 

merging or interconnecting topic maps or whole corporate memories with each other 
while preserving their semantics.

• DeepaMehta will import semantically enriched domain-specific data and transform and 
visualize them as a topic map, e.g. when dropping a RDF enabled business card 
(involving the "foaf", "contact" and "geo" ontologies) to the DeepaMehta desktop, it will 
visualize the contents as a topic map, showing the person, with all of his/her relations to 
friends, projects and a city map retrieved from google maps.

� 19 / 28



Extended collaboration features
Essential features of every collaboration environment are a) versioned data storage, b) a 
change history, c) notification, and d) access control.

• Versioning is a good method to cope with competing change requests without 
establishing a locking mechanism. Currently DeepaMehta contents are not versioned. 
Future versions of DeepaMehta will support versioning at 4 levels: topic contents, 
association contents, topic map geometry/visibility, and file contents.

• A change history helps to keep track of content changes performed by users: what was 
changed by whom and when? Changes can be presented visually like in Microsoft 
Word’s Change-View or in Wikis. Certain changes can be reverted. Currently 
DeepaMehta provides no change history.

• A notification mechanism informs users of relevant actions performed by other users: 
what has been done by my colleagues since my last login? A crucial concern is 
granularity: who should be notified and in what detail? Currently DeepaMehta’s 
notification mechanism is quite limited: members of shared workspaces are informed via 
messaging and email once a topic map is updated but not about what has been 
changed.

• An access control mechanism is crucial to protect confidential information and privacy 
and to enforce user hierarchies. Currently DeepaMehta provides an access control 
mechanism but it is not flexible enough. Basically it works on type-level and has the 
concept of a topic-owner. Future versions of DeepaMehta will provide access control at 
instance-level and even property-level.

Extended standard applications
The DeepaMehta platform comes with standard applications for Personal Information 
Management (PIM), Document Management and Web browsing/searching. PIM includes 
handling emails, contact information, appointments, and notes. All these functions are at 
prototype-level and can not yet replace the traditional applications. The rendering of 
HTML pages, in particular, is currently too limited.
Future versions of DeepaMehta will be able to replace the traditional email, web, text, and 
image applications and will import their data. The feature set that is used by 90% of the 
users will be provided. On high demand is the integration of a web engine like Gecko. 
Furthermore, audio and video contents will be supported.

Architectural Concerns
Currently DeepaMehta is a client-server system. The graphic DeepaMehta client is 
connected to one DeepaMehta server at a time. One server instance serves one corporate 
memory at a time. In order to fully exploit the network effect, future versions of 
DeepaMehta will allow one client to be connected with multiple servers resp. corporate 
memories at once. The requirements of associating topics from different corporate 
memories and of synchronization of certain parts of different corporate memories is 
apparent. A matching approach for topics is required. The Topic Maps concepts of Subject 
Indicators and Subject Identifiers would help here, but their is no obvious solution to these 
requirements yet.

� 20 / 28



In order to support the growth of a large-scale network of DeepaMehta servers, one can 
replace the client-server architecture by a peer-to-peer architecture. This opens up a lot of 
questions and requires in-depth discussions.
In order to integrate the DeepaMehta application server with other (non-Java) backend 
applications and services, the DeepaMehta server should provide the DeepaMehta 
applications as web-services. Because of the layered DeepaMehta architecture which 
clearly separates the application layer from the storage and presentation layers, it is 
already very close to a Service Oriented Architecture (SOA). For the moment there is no 
language independent interface to the application layer. Future versions of DeepaMehta 
will provide a SOAP interface to the DeepaMehta applications.

Related Work

Semantic Desktop
There are other semantic desktop environments, e.g. “IRIS” (www.openiris.org), 
“Haystack” (http://groups.csail.mit.edu/haystack/), “Gnowsis” (www.gnowsis.org), or 
“Nepomuk” (http://nepomuk.semanticdesktop.org). But none of them solve the problem of 
the missing work context in a cognitively adequate fashion (see “The Trouble with 
Computers and their solutions”).

Graph-based Information Visualization
There are other popular applications, for example, “TheBrain” and “Inxight StarTree”, that 
deploy tree or graph-based visualization to navigate in information spaces.
With “TheBrain” the user can organize his/her notes and files into a tree structure. The 
application displays an extract of the tree as nodes and edges. The node currently focused 
by the user is displayed in the middle of the screen. Around the focused node the 

application places all 
neighboring nodes. These 
comprise all the nodes that 
have a direct connection to the 
focused node. All other nodes 
are not displayed.
To navigate the tree structure 
the user clicks on a visible 
node. The application then 
moves the clicked node to the 
middle of the screen and again 
displays its direct neighborhood. 
The tree layout is done 
automatically, according to rules 
not transparent to the user. 
Therefore “TheBrain” is not 
cognitively adequate as it does 

not satisfy the criteria of free positioning. Haller (2003) points this out in his thesis 
“Mappingverfahren zur Wissensorganisation”:

Fig. 15: “The Brain” displays an extract of a tree structure, 
with the focused node in the middle of the screen. Setting 
another focus causes a complete rearrangement of the 
display. www.thebrain.com

� 21 / 28



“The main advantage of [visual] mapping approaches is the possibility to organize 
information spatially, according to the user’s Cognitive Map (Chen & Czerwinski, 
1998; Dillon et al., 1993). So, it is important to let the user position the nodes freely 
in order to adapt the map to his/her internal spatial model. The nodes should keep 
their positions (at least relatively to their neighborhood), if the map is modified. 
Otherwise orientation in information space by means of Cognitive Maps is 
hindered.”

“Inxight StarTree” allows the visualization of extensive tree and network structures on a 
limited display space. Like “TheBrain”, the node that is focused by the user is displayed 
near the middle of the screen. But unlike “TheBrain”, not only the direct neighborhood is 
displayed, but also deeper levels of the node hierarchy. This is possible because “Inxight 

StarTree” deploys a projection of a 
hyperbolic plane to a region of the screen. 
Effectively, an increasing scaling factor is 
used towards the screen borders.
The tree or network structure is navigated 
quasi by moving the screen region within 
the hyperbolic plane. Due to the hyperbolic 
projection, it can happen that one minute 
node A is above node B and the next 
minute it is the other way around. This 
visualization approach is also cognitively 
inadequate as it doesn’t allow the user to 
orientate him/herself within the information 
space.
Both, “TheBrain” and “Inxight StarTree” 
allow the user to navigate large information 
spaces in an associative manner. But their 
automatic layout approaches are not 
cognitively adequate because they do not 
support the process of knowledge 
acquisition — learning — of the user. The 
visualization approach does not consider 
the mental state of the learner. A work 

environment for knowledge workers can be regarded as cognitively adequate if it supports 
associative navigation and a visualization approach that enables the user to arrange, and 
thus create, the display.

Fig. 16: “Inxight StarTree” deploys a hyperbolic 
projection to display different hierarchy levels at 
once. While navigating, the spatial neighbor-
hoods of the nodes are not preserved.
www.inxight.com/products/sdks/st/

� 22 / 28



Future Research Directions
Until now artificial intelligence and semantic web have brought no significant benefit for the 
computer user. This situation will not change as long as computer scientists adhere to the 
rationalist tradition in AI and its reduced and mechanical understanding of our environment 
and human nature itself. The authors propose to reanimate the principles of soft 
cybernetics and to examine the images that underly the current computer research and 
system designs.

Reanimating Soft Cybernetics
The modern computer age is in its infancy and our understanding of what computers do 
and how their functioning is related to human language, thought, and action is very limited. 
This is evident when software engineers use terms like “intelligence”, “recognition”, 
“meaning”, “learning”, “reasoning”, “knowledge”, and “understanding”, for example, to 
describe their systems. Computer science is practiced mainly by engineers. The authors 
propose interdisciplinary collaboration between computer scientists and humanists: 
psychologists, linguists, philosophers, and epistemologists, as well as with biologists and 
artists. To the knowledge of the authors the last crucial effort for such collaboration were 
the Macy conferences held from 1946 to 1953.
During the following years, computer research split into two schools of thought: hard 
cybernetics, which later became the AI movement, and soft cybernetics. It is the school of 
hard cyberneticists and the AI advocates that increasingly dominates computer science 
research. They receive the major funding and set the research agenda, while the soft 
cyberneticists seem to have disappeared from the scene.
The central points of these two schools of thought are:

• The hard cyberneticists and AI advocates believe that all things and processes, including 
language, understanding, learning, and social interaction are describable by the means 
of logic. The meaning of a thing exists independently from a person that uses that thing, 
e.g. the meaning of a text is hidden in the text itself and is independent from the reader. 
Cognitive aspects play no role in this belief, because cognition is a phenomenon that can 
be simulated by a mechanical-mathematical model.

• The soft cyberneticists believe intelligence is an evolutionary result of the environment in 
which it has emerged. Meaning emerges only in the moment of action. Cognitive 
systems are closed systems which emerge from themselves, in a process that can be 
called “Autopoiesis” (Maturana & Pörksen, 2002). Intelligence is inseparable from 
cognition and information is inseparable from its use. Computers can not be intelligent as 
long as they are not closed systems but dependent on a programmer.

The authors suggest a redirection of attention away from the school of hard cybernetics 
and AI to a focus on the school of soft cybernetics, and to study the human-machine-
system and the relation of cognition and computers.

� 23 / 28



Fig. 17: Feedback cycle of the 
human-machine-system. Human 
beings have intentions and 
negotiate/cooperate with each 
other about how to use the 
computer in a certain usage 
context. They make a 
mathematical model with which the 
machine can compute. The results 
are interpreted by human beings at 
two levels: 1) what to do with the 
result in the usage context? and 2) 
Meta-Interpretation: how did the 
result come about? Is the model 
correct?

Human Semantic

Machine Semantic

Negotiation / 
Cooperation

Interpretation

Intention

Modeling

Computation

Intention

A soft cyberneticist does not see the computer as an entity that performs a dialog with the 
user, or that cooperates with the user, or that has any intention, because a computer is not 
a cognitive system. Even if the property of having intentions or the process of 
interpretation is included into a mathematical model, no new quality is established in the 
machine. The cycle is just delayed. In the end, it remains up to the human being to 
interpret the value of the generated results in respect to his/her usage context. Human 
beings and machines belong to different semantic realms, and the dividing line can not be 
removed. Interpretation can not be automatized.
Interdisciplinary collaboration would help to get a better understanding of the human-
machine-system and to build computers with a greater benefit for the user.

Examining underlying images
For the direction of future computer research one needs to examine the underlying images 
that computer scientists and system designers have of the machine. One would foresee 
completely different application domains and create different user interfaces depending on 
whether one sees the computer, for example, as an assistant or as a tool:

• With the image of an assistant in mind, the computer is regarded as an intelligent agent, 
one who performs a dialog with the user, and understands the user’s intentions.
This is evident, for example, when the word processor asks one “A sentence must begin 
with a capital. Shall I do it for you?”. Or when semantic web researchers try to delegate 
the process of semantic annotation to the machine, as if the machine could read and 
understand webpages on one’s behalf.

• With the image of a tool in mind, the computer is regarded as a thing. The human being 
performs his/her tasks him/herself and uses the tool to augment his/her faculties.

Outside from computers, the building of tools has a very long tradition. We are far away 
from harnessing the digital power as we harnessed, for example, a hammer or a pencil. 
But if we ask the right questions about how digital tools should be built, we are on the right 
track. The authors propose that researchers and engineers adapt the tool image when 
formulating research issues and designing computer systems.

� 24 / 28



Fig. 18: The underlying image of 
the machine determines the 
research direction and the resulting 
computer designs. If one sees the 
computer as an intelligent assistant 
(left side), one tries to build a 
machine with cognitive faculties. If 
one sees the computer as a tool 
(right side), one tries to design it to 
meet the demands of human 
beings in their environment.

Research Issues
Computer Science / Human Computer Interaction

• What are the implications for the semantic web, if semantics is not hidden in texts but 
only emerges when the text is used by human beings in a certain usage context? 
(Meaning as Use as described in Wittgenstein, 1953)

• What are the implications for artificial intelligence and the semantic web if “information 
and its use are inseparable and actually form a single process”? (Jerzy Konorski, cited in 
Foerster, 1993)

• How can a collaborative semantic work environment be designed to support constant 
changes of content, structure, and logic?

• What images support a sustainable technology development?
Cognitive Science

• How can the process of knowledge creation be supported by a computer?
• How can a user interface be designed to exploit the inherent human cognitive faculties?
Communication Science / Linguistics

• How can the process of semantic emergence be supported by a computer?
Philosophy

• Do computers act?
Cultural Studies

• What comes after postmodernism? What could be the features of post-digitalism?

� 25 / 28



References
Canfield Smith, D., Irby, C., Kimball, R., Verplank, B., & Harslem, E. (1982). Designing the 

Star User Interface. Byte, 4/1982, pp. 242-282.
Chen, C., & Czerwinski, M. (1998). From latent semantics to spatial hypermedia — An 

integrated approach. Proceedings of the 9th ACM Conference on Hypertext 
(Hypertext '98). June, 1998, Pittsburgh. Retrieved August 6, 2007, from 
www.pages.drexel.edu/~cc345/papers/ht98.pdf

Dillon, A., McKnight, C., & Richardson, J. (1993). Space — the Final Chapter or why 
physical representations are not semantic intentions. In C. McKnight, A. Dillon, & J. 
Richardson (Ed.), Hypertext: a Psychological Perspective (pp. 169-191). Chichester: 
Ellis Horwood.

Foerster, H. v. (1993). Wissen und Gewissen. Versuch einer Brücke. Frankfurt am Main, 
Germany: Suhrkamp.

Grudin, J. (1990). Interface. Proceedings of the 1990 ACM Conference on Computer 
Supported Cooperative Work (pp. 269-278). Los Angeles, California: ACM Press.

Haller, H. (2003). Mappingverfahren zur Wissensorganisation. Thesis. Published at 
KnowledgeBoard Europe. Retrieved August 6, 2007, from www.heikohaller.de/
literatur/diplomarbeit/mapping_wissorg_haller.pdf

Maturana, H. R., & Pörksen, B. (2002). Vom Sein zum Tun. Die Ursprünge der Biologie 
des Erkennens. Heidelberg, Germany: Carl-Auer-Systeme Verlag.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 
capacity for processing information. Psychological Review, 1956, vol. 63, pp. 81–97.

Murray, J. H. (2003). Inventing the Medium. In N. Wardrip-Fruin, & N. Montford (Ed.), The 
New Media Reader (pp. 3-11). Cambridge, Massachusetts: The MIT Press.

Nelson, T. (2001). Talk at ACM Conference on Hypertext (Hypertext 2001). Retrieved 
August 4, 2007, from http://asi-www.informatik.uni-hamburg.de/personen/obendorf/
download/2003/nelson_ht01.avi.bz2

Pepper S., Vitali F., Garshol L. M., Gessa N., & Presutti, V. (2006). A Survey of RDF/Topic 
Maps Interoperability Proposals (W3C Working Group Note 10 February 2006). 
Retrieved August 4, 2007, from www.w3.org/TR/rdftm-survey/

Richter J., Völkel M., & Haller, H. (2005): DeepaMehta — A Semantic Desktop. In S. 
Decker, J. Park, D. Quan, & L. Sauermann: Proceedings of the 1st Workshop on The 
Semantic Desktop. 4th International Semantic Web Conference (Galway, Ireland), 
volume 175. CEUR-WS, November 2005.

Wittgenstein, L. (1953). Philosophische Untersuchungen. Frankfurt am Main, Germany: 
Suhrkamp (2003).

� 26 / 28



Additional Reading
Semantic Web / Semantic Desktop
Decker S., & Frank, M. (2004). The Networked Semantic Desktop. In Workshop on 

Application Design, Development and Implementation Issues in the Semantic 
Workshop at WWW2004, New York, USA. Retrieved August 6, 2007, from http://
triple.semanticweb.org/svn/stefan/DeckerFrank.pdf

Manola, F., & Miller, E. (2004). RDF Primer (W3C Recommendation 10 February 2004). 
Retrieved August 6, 2007, from www.w3.org/TR/rdf-primer/

Pepper, S. (2000). The TAO of Topic Maps. Finding the Way in the Age of Infoglut. 
Retrieved August 6, 2007, from www.ontopia.net/topicmaps/materials/tao.html

Pepper, S., & Moore, G. (2001). XML Topic Maps (XTM) 1.0 (TopicMaps.Org 
Specification). Retrieved August 6, 2007, from www.topicmaps.org/xtm/1.0/

Computer System Design
Landauer, T. K. (1996). The Trouble with Computers: Usefulness, Usability, and 

Productivity. Cambridge, Massachusetts: The MIT Press.
Norman, D. A. (1986). Cognitive Engineering. In D. A. Norman & S. Draper, User Centered 

System Design (pp. 31-61). New Jersey: Erlbaum.
Suchman, L. A. (1987). Plans and Situated Actions: The Problem of Human-Machine 

Communication (Learning in Doing: Social, Cognitive & Computational Perspectives). 
Cambridge, UK: Cambridge University Press.

Winograd, T., & Flores, F. (1986). Understanding Computers and Cognition. A New 
Foundation for Design. Addison-Wesley Professional.

Philosophy of Language / Semantics
Austin, J. L. (1962). How to Do Things With Words. Cambridge, Massachusetts: Harvard 

University Press (2005).
Searle, J. (1969). Speech Acts. Cambridge, UK: Cambridge University Press.
Cognition
Foerster, H. v., & Pörksen, B. (2006). Wahrheit ist die Erfindung eines Lügners - 

Gespräche für Skeptiker. Heidelberg, Germany: Carl-Auer-Systeme Verlag.
Maturana, H. R., & Varela, F. J. (1992). The Tree of Knowledge. The Biological Roots of 

Human Understanding. Boston: Shambhala.
Miscellaneous
Weizenbaum, J. (1978). Die Macht der Computer und die Ohnmacht der Vernunft. 

Frankfurt am Main, Germany: Suhrkamp (2003).

� 27 / 28



About the Authors
Dipl.-Inf. Jörg Richter
Born 1967 in Berlin. Develops software since 1980. CHIP programming award in 1985. 
1988-1995 study of computer science (focus on AI and software engineering) and 
linguistics at Technical University Berlin. Fellow at Research Centers for Network 
Technologies and Multimedia Applications under Prof. Rebensburg. Professional software 
developer in the areas of knowledge management, e-learning, and learning management. 
Lead developer of artfacts.net, the world’s largest portal for modern and contemporary art. 
Since 2005 CTO of the DeepaMehta company. Best-Practice awards for DeepaMehta of 
D21 and we make IT Berlin.Brandenburg initiatives.
Dr. rer. nat. Jurij Poelchau
Born 1963 in Berlin. 1982-1998 study of physics, mathematics and philosophy at the 
Technical University Berlin. Scientific assistant. Publications in the field of many-body 
quantum mechanics. Since 1998 researcher and consultant for sustainability strategies at 
Agenda-Agency Berlin (co-founder), TU Berlin, Regioconsult, and fx-Institute for 
Sustainable Economics (co-founder). His main field of work is to synthesize social, 
cultural, ecological, economic and technological innovation. Since 2007 consultant for the 
DeepaMehta company. Co-founder of the amina-foundation.

� 28 / 28


